

Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning



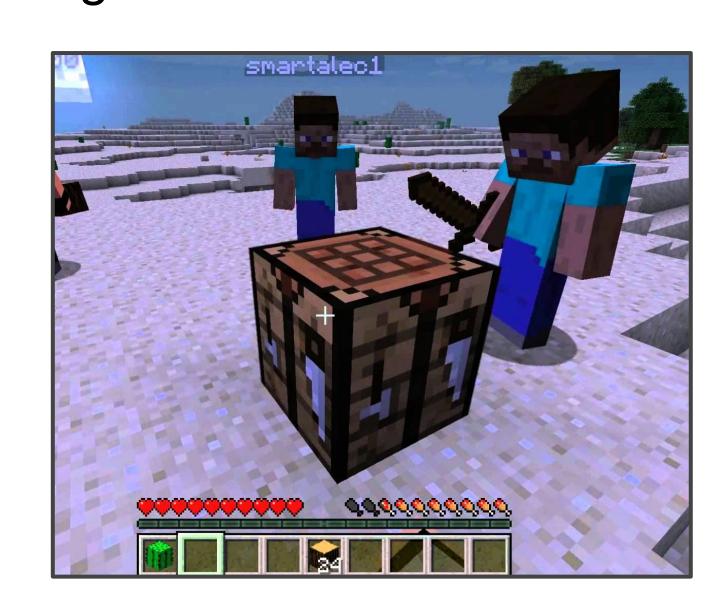
Li Lucy, Jon Gauthier Stanford NLP Group & MIT Computational Psycholinguistics Laboratory

Introduction

What are the limits of distributional meaning?

Do word embeddings produced from text alone yield sufficient knowledge about the real world?

Is there theoretical gain in modeling language learning/use as grounded or situated in more than just text?



We find systematic deficiencies in the encoding of grounded perceptual features with standard word embedding distributions.

Datasets

Semantic norm datasets contain judgments of perceptual and conceptual features of natural kinds.

They contain grounded knowledge about everyday objects.

McRae [1]

"apple"

CSLB [2]

is_green

does_grow

is_red

is_a_fruit

does_grow_on_trees

has_pips_seeds

has_a_stalk_stem

is_red a_fruit grows_on_trees is_green eaten_in_pies is_crunchy has_seeds

is_circular_round is_juicy

We use standard corpora and distributional word embedding algorithms to build vector representations of the concepts in semantic norm datasets.

Method	Training corpora
GloVe [3]	Wikipedia 2014 + Gigaword 5
GloVe	Common Crawl
word2vec [4]	Google News

Approach

The feature view

- Which semantic norms can be accurately predicted by distributional word embeddings?
- Learn regularized binary logistic regression for each feature on word embeddings.
 - Each classifier predicts the presence/absence of a feature for each concept

The concept view

- How do deficiencies in semantic norm encoding carry over to predictions of concept similarity?
- Compare concept similarity predictions according to word embeddings and according to semantic norms

The feature view

embeddings fail to

features of natural

kinds. (Each point is a

The concept view

shows how missing

lead to mismatches in

word-word similarity

a concept; color denotes

concept's corresponding

the median score of the

features.)

semantic features

encode sensory

shows that, on

average, word

Analysis

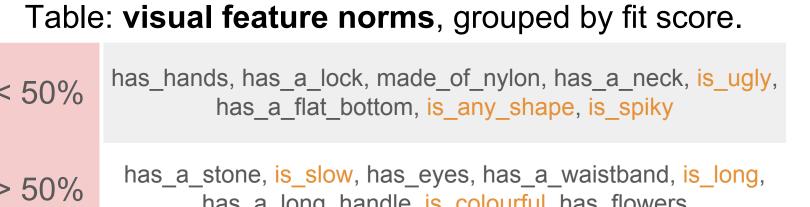
Feature view

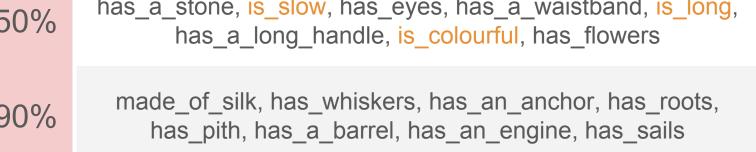
A bootstrap significance test shows that perceptual features are significantly worse predicted in 2 of 3 tests: 95% Cls:

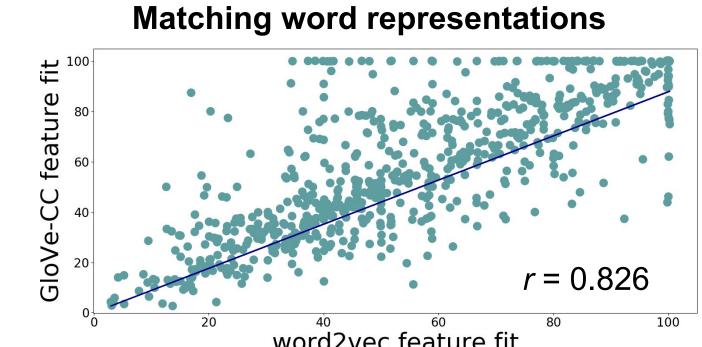
Test statistic:

(functional, taxonomic) - (visual perceptual, other perceptual)

GloVe Common Crawl: (7.67%, 24.0%) word2vec Google News: (7.13%, 20.6%) GloVe Wikipedia/Gigaword: (-1.25%, 15.7%)





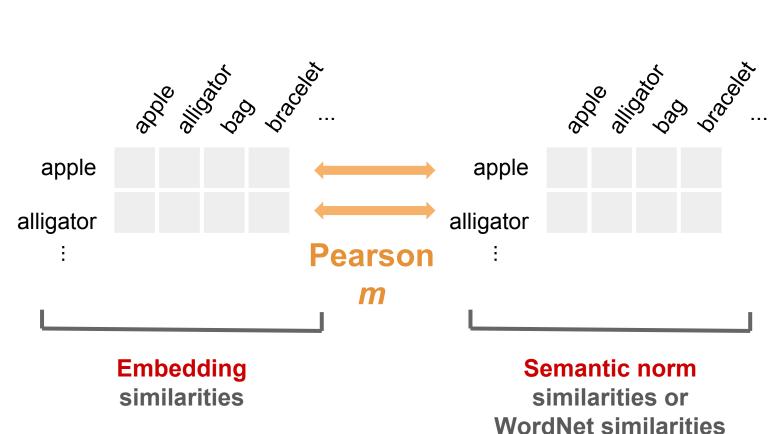


Concept view

Feature fit deficiencies correlate with mismatches in concept similarity predictions.

See bottom graph in **Results**; r = 0.6160 between m(GloVe-CC, CSLB) and m(GloVe-WordNet).

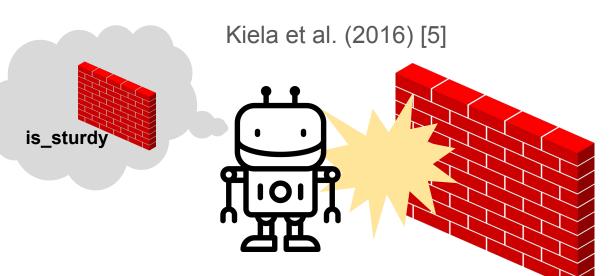
Feature fit is a significant predictor of concept similarity match (correlation between distance predictions) according to post-hoc multiple regression F-tests.



Conclusion

- We find deficiencies in how word embeddings encode basic perceptual features of natural kinds.
- These deficiencies correlate with mismatches in predictions of pairwise concept similarity.
- These patterns appear in word embeddings sourced from different corpora and learned via different

"...if we want to teach a system the true meaning of 'bumping into a wall,' we simply have to bump it into walls repeatedly.



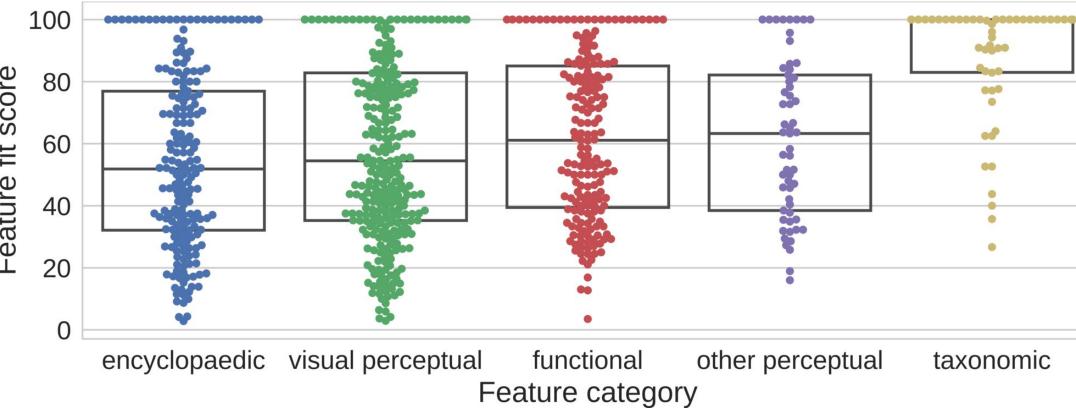
Can we fix these issues with more naturalistic data? Or do we need to expand our definition of *meaning*?

predictions compared with the semantic algorithms. norms and with WordNet. (Each point is

References

- Ken McRae, George S Cree, Mark S Seidenberg, and Chris McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4):547-559.
- Barry J Devereux, Lorraine K Tyler, Jeroen Geertzen, and Billi Randall. 2014. The centre for speech, language and the brain (cslb) concept property norms. Behavior
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances
- in neural information processing systems. pages 3111-3119.
- Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In Empirical Methods in Natural Language Processing (EMNLP). pages 1532–1543. http://www.aclweb.org/anthology/D14-1162.
- . Douwe Kiela, Luana Bulat, Anita L Vero, and Stephen Clark. 2016. Virtual embodiment: A scalable long-term strategy for artificial intelligence research. arXiv preprint arXiv:1610.07432 .

Results



-0.2m(GloVe-CC,CSLB)

m(Glo